Microtubules to Form Memory

Fuyuki Mitsuyama1,3,4, Yoshio Futatsugi2, Masato Okuya3, Kostadin Karagiozov1, Yoko Kato1, Tetsuo Kanno1, Hirotoshi Sano1 and Tadashi Koide4

1Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
2Department of Pediatric Neurology, Tomishiro Central Hospital, Okinawa, Japan
3Department of Internal Medicine, Tenju Hospital, Nagoya, Aichi, Japan
4Fukuyu Medical Institute, Nagoya, Aichi, Japan

Key words: microtubules, learning and memory, LTP, receptor trafficking, gene expression during memory.

INTRODUCTION

It is widely believed that a long-lasting change in synaptic function is the cellular basis of learning and memory (Alkon and Nelson, 1990; Eccles, 1964; Hebb, 1949; Kandel, 1997). The best-characterized forms of such synaptic plasticity are the long-term potentiation (LTP) observed at excitatory synapses in the CA1 region of the hippocampus (Teyler and DiScenna, 1987; Gustafsson and Wigstrom, 1988; Nicoll et al., 1988; Madison et al., 1991; Bliss and Collingridge, 1993; Larkman and Jack, 1995; Nicoll and Malenka, 1995). These synapses, which are countless...